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Load relaxation of stainless steel 
Type AISI 304 near 563K 
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Load relaxation data reported by Anciaux, near 563 K, on mill-annealed Type AISI 304 
stainless steel are interpreted in terms of a general expression which describes stress 
relaxation as thermally activated dislocation motion over precipitates. Several physical 
parameters are obtained from the stress -strain rate curves and it is shown that for some 
stress relaxation curves the internal stress does not remain constant during the relaxation. 

1. Introduction 
Anciaux [1] has published load relaxation data, 
near 563K, for three austenitic stainless steels. 
The tests were conducted in a strain-controlled 
servo-hydraulic test machine near the yield point 
strain levels. For stainless steel Type AISI 304 
Anciaux reported the stress-strain rate trajector- 
ies, at different strain levels, for mill-annealed 
specimens. The shape of  the log stress-log strain 
rate stress relaxation curve was found to depend 
on the strain level, but no explanation was given 
for this behaviour. Furthermore, the curves did 
not translate on to a master stress-strain rate 
trajectory. 

Povolo and Tinivella [2] have recently interpre 
ted stress relaxation measurements, performed at 
773 K in bending, in Type AISI 304 stainless steel 
in terms of a stress-partitioned power law. For 
certain thermomechanical treatments it was found 
that the internal stress depended on the applied 
stress since the miclostructure recovered during 
the relaxation. 

It is the purpose of this paper to interpret 
Anciaux's data in terms of a general expression 
that describes the stress relaxation behaviour as a 
thermally activated process. Several physical par- 
ameters will be obtained from the stress relaxation 
curves and a comparison will be made with the 
results obtained in bending. 

2. Results 
The experimental details and the composition of 
the alloy used have been described by Anciaux 
[1]. Fig. 1, taken from Fig. 6 of  [1], shows the 
load relaxation curves obtained in mill-annealed 
AISI 304 near 563K. The last number on each 
curve indicates the total applied strain during 
relaxation. 

All specimens were obtained at the same tem- 
perature; for specimens T5 the tests were 
performed at 568K, for specimens RIO at 566K, 
and for specimen R8 at 558 K. 

From Fig. 1 it may be seen that the stress-srain 
rate trajectories are mainly described by concave 
upward curves, except for specimens T5/2% and 
T5/0.3% where the concavity changes at low strain 
rates. Povolo and Tinivella [2] have observed 
either concave upward or concave downward 
stress-strain rate trajectories during stress relaxa- 
tion measurements, in bending, on AISI 304 at 
773 K. The concave upward or linear trajectories 
have been interpreted in terms of the Johns ton -  
Gilman equation [3], and the concave downward 
ones in terms of Hart's [4] equation for high 
homologous temperatures. A similar procedure 
will be used to interpret the curves of Fig. 1 and 
will be extended to those curves showing a mixed 
curvature. 

The very well known equation that describes 
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Figure 1 Load relaxation stress-strain rate trajectories for 
mill-annealed AISI 304 near 563 K, taken from Fig. 6 of 
[1]. 

the plastic strain rate in terms of  thermally activa- 
ted dislocation motion is [5] 

= ~ ,exp[ - -AG(O) /kr]  (1) 

where 4 is the plastic strain rate, et is a general pre- 
exponential factor, T is the absolute temperature, 
k is the Boltzmann's constant, AG the change in 
the free enthalpy and 0 is the effective stress. Fur- 
thermore, ~ = o -- oi where cr is the applied stress 

and o i an internal stress. I f  AG is expressed as 

AC(O) = AGo--  AGm(O) (2) 

Equation 1 can be written as 

4 = 4oexp [AG' (O) /kT]  (3) 
where 

4o = 41exp( - -AGo/kT)  

and AGm(O) gives the contribution to the change 
in the free enthalpy due to the applied stress. 

As shown by Povolo and Tinivella, [2], the 
Johnston-Gilman equation, 

�9 F / t *  = Opbvo(O/Oo) m* = ej--G(O/O0) (4) 
with 

G--G = r (5) 

where ~b is an orientation factor, p is the mobile 
dislocation density, b is the Burgers vector and 
Vo, Oo and m* are material constants, can be 
written in the form of Equation 3 if 

AGm(O)Ij--G = m*kTln(O/ao)  (6) 

and 
~o = r = eJ--e (7) 

Furthermore, as also shown by Povolo and 
Tinivella [2], Hart's equation for kigh homologous 
temperatures, 

4 = 4H[ln(a*/a)] -1/~ (8) 

where a* is a hardness parameter, X is a tempera- 
ture-independent parameter and eI~ depends on 
temperature, heat treatment and deformation, can 
be written in the form of Equation 3 if 

k T  
AGm(O)IH - in [ln(a*/a)] (9) 

X 

and 
4o = 41-/ (10) 

The activation volume, defined by 

V* = -- 3AGm(O)IDOIT (1 1) 

in the case of Johnston-Gilman equation reduces 
to 

V* = krrn*/6 (12) 

By following the fitting procedure described in 
[2] it can be shown that the curves with concave 
upward curvature in Fig. 1 can be well described 
by the Johnston-Gilman equation (Equation 4), 
with the parameters given in the first five rows of 
Table I. The activation volumes, obtained using 
Equation 12 and the parameters given in Table I, 
are shown in Fig. 2 as V*/b 3 plotted against 5. The 
activation volumes obtained during stress-relaxa- 
tion in bending, at 773K, for cold-rolled (E = 
220MPa) and cold-rolled plus solution annealed 
l h  at 1201K plus aged 16h at 993K ( E =  
223 MPa) Type 304 steel are also shown in Fig. 2 
for a comparison. E indicates the initial stress at 
the surface of the bent beam before relaxation. 
The corresponding parameters are given in rows 6 
and 7 of Table I. 

The stress relaxation data reported by Povolo 
and Tinivella [2] showed only concave upward or 
concave downward stress relaxation log a - l og~  
trajectories and were interpreted either in terms of  
Equation 4 or Equation 8. As shown in Fig. 1, 
however, a mixed curvature was observed for 
specimens T5/0.3% and T5/2%. The interpretation 
of these two curves will be based on the following 
argument: it will be assumed that the stress relaxa- 
tion curves are described actually by Equation 3 
With unknown AGm(O) and 4o. In the region 
where an upward curvature is present, Equation 3 
reduces to Equation 4 and the data are described 
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TABLE I Parameters obtained by fitting the loga-log ~ curves of Fig. 1 either to Equation 4 or to Equation 8. The 
values obtained during stress relaxation in bending at 773 K are also given for comparison 

( O~00) WI* Curve a i (MPa) ea--G (sec-0 m* X a* (MPa) ~tt(sec -a) a0 (MPa) 

T5/0.75% 177.3 3.69 4.77 
T5/3% 206.4 8.1 X 104 14.6 
R10/0.75% 166.6 8.3 4.68 
R10/2% 175.2 4.5 X 104 14.12 
R8/2.6% 189.7 107 8.3 
I; = 220 MPa 0 - 4.6 
Z; = 223 MPa 97.8 7.4 X 10 -7 5.8 
T5/0.3% 153 2.9 4.36 
T5/2% 206.4 239 6.91 

0.60 155.4 6.4 X 10 -13 0.20 
0.22 216.8 2.8 X 10 -~s 0.72 

by the Johns ton-Gi lman  equation. In the region 

where the curves show downward curvature, Equa- 
tion 3 reduces to Equation 8 and the data are des- 
cribed by Hart's equation for high homologous 
temperatures. These arguments are shown 
graphically in Fig. 3 where the points have been 

obtained from the actual experimental curves 
shown in Fig. 1. The full curves indicate the region 
where Equation 3 reduces to Equation 4 and the 
broken curves the region where Equation 3 
reduces to Equation 8. There will be a transition 
region where the experimental curve changes 
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Figure 2 Activation volumes plotted against the effective 
stress for the relaxation curves of Fig. 1. The results 
obtained by stress-relaxation in bending, at 773 K, in 
cold-rolled (2; = 220 MPa) cold-rolled + solution annealed 
+ aged (Z: = 223 MPa) AISI 304 are shown for a compari- 
son. 

curvature, i.e. where the experimental data can be 

described both by Equations 4 and 8. 
As indicated in Fig. 3, there is only a transition 

point for the curve T5/2%, characterized by the 
critical stress a e = 210.9MPa. For curve T5/0.3% 

the Iransition region is described by 154.3 ~< o c ~< 

155.2MPa. It is clear that ai ~< ae~<a *. Further- 
more, in the transition region 

zXGm(O)la--a = / " G " " ( 0 ) I H  

~H : ia----G (13) 

and the activation volume can also be expressed by 
[2] 

V* - m * k T  [ln(o, /a)l l /Xm* (14) 
Oo 

On equating Equations 14 and 12 it is easy to 

show that at the critical stress 

Oo = (crc- oi)[ln(a*/cO] 1/x"r (15) 

The parameters obtained for curves T5/0.3% and 
T5/2% by fitting them in the way described in Fig. 
3 are given in the last two rows of Table I. The 
detailed fitting procedure is described elsewhere 
[2]. ao obtained using Equation 15, the par- 

ameters given in Table I and the values of ae given 
in Fig. 3 are also included in Table I. For curve 
T5/0.3%, since due to the graphical procedure 
oc is not unambigously defined, an average value 
was used to calculate Oo given in Table I. In any 
case, the value chosen for c% will not change the 
results substantially. A numerical procedure to 
determine Oo will be described elsewhere [6]. 

Equation 4 reduces to Equation 8 if the 
internal stress changes according to the law [2] 

a i = O -- oo[ln (o*/a)] -1lain* (16) 

for a < o*. The internal stresses for all the curves 
of Fig. 1 are shown in Fig. 4 as a function of the 
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Figure 3 Fitting of the experimental T5/0.3% 
and T5/2% curves of Fig. 1 (full circles) to 
the Johnston-Gilman (full curves) and 
Hart's equation (broken curves). The stresses 
at which both equations describe the exper- 
imental data, %, are indicated. 

applied stress. The internal stresses for curves 
T5/0.3% and T5/2% have been calculated with 

Equation 16 for o ~< oe and the parameters given 
in Table I. The corresponding activation volumes, 
calculated either by using Equationl2 or 14 are 
shown in Fig. 2 as V*/b 3 plotted against ~. 

Finally, plots of AGm(O)/kT against 0 for 
T5/0.3% and T5/2% are shown in Fig. 5. These 
curves can be obtained by using either Equation 6 
or 9 and the parameters given in Table I. The stress 
dependence of  ai , shown in Fig. 4, should be 
taken into account when calculating AGm(a) with 
Equation 6. A similar calculation for the rest of 
the curves of  Fig. 1 is not possible since o0 cannot 
be determined. 

3. Discussion 
From Table I it can be seen that m* does not 
remain constant for all the stress relaxation curves, 
indicating that even the curves described by the 
Johnston-Gilman equation with constant ai can- 

~200 

150 f _ _  

T512 

,~R8/2.6 

T5/0,75 

R10/025 R1012 

T5/03 

T5/3% 

150 200 250 
fi,,1Pa) 

Figure 4 Internal stresses plotted against the applied stress 
for the log a -log ~ curves of Fig. 1. 
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not be related by scaling [7, 8], i.e. the curves do 
not translate on to a master stress-strain rate 
trajectory. 

An important point tO be stressed is the fact 
that the data have been interpreted in terms of  a 
general equation (Equation 3) describing thermally 
activated plastic deformation. When the experi- 
mental curves can be described either by the 
Johnston-Gilman or by Hart's equation, it means 
only that the general equation reduces to these 
particular cases: The particular equations are used 
only to obtain the physical parameters involved in 
Equation 3. Furthermore, since the physical par- 
ameters AG rn and V* must change continuously 
along a given stress-relaxation curve, in the case 
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Figure 5 Free activation enthalpy plotted against the 
effective stress for curves T5/0.3% and T5/2% of Fig. 1. 



of curves T5/0.3% and T5/2% it is possible to 
relate the empirical parameters of  Hart's equation 
with those of the Johnston-Gilman equation. 
When this correlation is possible, i.e. when the 
stress relaxation curves present a mixed concavity, 
2xG m and V* can be determined for the whole 
curve. This is not  the case when the stress relaxa- 
tion curves with only one type of concavity are 
measured, as for the data reported by Povolo and 
Yinivella [2] or for the concave upward curves of 
Fig. 1. In fact, when the curves are concave 
upward and can be described by Equation 4, V* 
can be determined using Equation 12 but 
Equation 16 cannot be used to determine A G  m 

since oo is unknown. If  the curves are concave 
downward and can be described by Equation 8, 
A G  rn can be determined using Equation 9 but cr i 
and V* remain unknown (see Equations 14 and 
15). 

Since Hart's equation can be considered as a 
particular case of  the Johnston-Gilman equation 
with a stress-dependent internal stress, the 
empirical parameters a*, en and 3, of  Equation 8 
can be related to the more physical parameters of 
Equation 4. According to Equations 13 and 5, 
eH = ~pbvo which shows that eH is related to the 
dislocation density and, consequently, should be 
strongly dependent on the thermomechanical 
treatment as actually observed. Furthermore, from 
the values reported in Table I it is easy to show 
that the condition expressed by Equation 13 is 
satisfied, o* can be interpreted as the maximum 
value that can be reached by the internal stress. 
The physical significance of  X is difficult to estab- 
lish since it is related to ai, m*, o* and ooin a com- 
plicated way. On differentiating Equation 16 and 
when in o* >> in o it is easy to show that 

In O1 
O~n~lTI = 1/Xrn*lna* (17) 

so that )t is related to the slope of  the linear vari- 
ation of  in 0 with In a at low applied stresses. In 
addition, on differentiating Equation 9 and impos- 
ing the condition In o* >> In o leads to 

0 ___ 
0 l na  ]T -- 1 / X m * l n o *  (18) 

Comparing Equations 17 and 18 leads to 

OV* = constant 

Then, when the data are described by Hart's equa- 

tion the product of the activation volume and the 
effective stress remains constant, at low stresses. 

In the simple model used it was assumed that 
the dislocation density remains constant during 
each relaxation. Even if this is a strong assump- 
tion, reasonable values are obtained for the activa- 
tion volumes when dislocation motion is 
controlled mainly by the interactions with precipi- 
tates. This is also the case for the values of  the 
activation free enthalpies shown in Fig. 5. It 
should be pointed out that both V* and A G  rn 

represent average values for the material and not 
the magnitudes associated with a specific obstacle. 

In summary, the stress relaxation curves of  Fig. 
1 show that in some cases the internal stress does 
not remain constant during relaxation, due to an 
evolution of the structure. It is clear that further 
work is needed to substantiate this conclusion and 
the model used in this paper. 

4. Conclusions 
The stress relaxation behaviour of  mill-annealed 
AISI 304 near 563K can be represented by a 
general equation describing thermally activated 
dislocation motion over precipitates. In different 
regions of  the stress-strain rate curves the general 
equation can be reduced to certain expressions 
which allow a determination of  the physical par- 
ameters involved. 

Finally, it has been shown that for some stress- 
relaxation curves the internal stress does not 
remain constant during relaxation. 
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